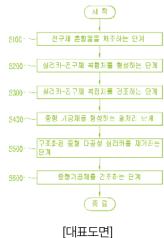


118


기술 분류_ 수소

고분자전해질(PEM) 수전해 산소 발생 반응 촉매 및 그의 제조 방법

01 기술개요

고분자전해질(PEM) 수전해 산소 발생 반응 촉매는 금속 산화물 입자의 응집체로 이루어지는 중형 기공체(mesoporous material)를 형성하는 방법

- (제조) 구조화된 중형 다공성 실리카와 같은 다공성 주형 물질에 금속염을 함침하여, 건조 및 열처리하고 주형물질을 제거하여 PEM 수전해 산소 발생 반응 촉 매를 형성할 수 있음
- (특징) 중형 다공성 실리카를 주형으로 하여 용액화 된 원하는 물질의 전구체를 주형의 기공 안에 채워 넣고 열처리를 통해 결정화를 이루어 실리카 제거

02 기술차별성

촉매 사용량 감소로 비용 절감

• 금속 산화물 입자의 응집체로 이루어지는 중형 기공체로 나노-복제법으로 제조되어 비표면적이 95m2/g 이상으로 넓은 반응 면적을 가질 수 있음

고분자전해질(PEM) 수전해 기술의 공정의 수소 발생 반응 촉매의 비용을 절감

• 고분자전해질(PEM) 수전해 산소 발생 반응 촉매는 금속 산화물 입자의 응집체로 이루어지는 중형 기공체로 금속 산화물은 루테늄(Ru)을 포함하고, CuK-알파 특성 X-선 파장 1.541Å에 대한 브래그 20각의 제1피크가 20 내지 25도 사이에서 나타나고, 제2피크가 32 내지 37도 사이에서 나타나고, 제2피크의 세기(intensity)당 제1피크의 세기(intensity)의 비율이 1을 초과하므로 2피크가 발당한

03 기술키워드

고분자전해질, PEM, 수전해

04 기술의 TRL 단계

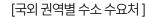
미래도전 502

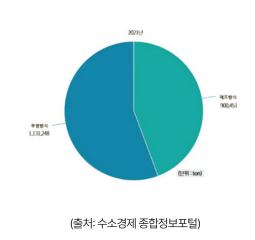
118

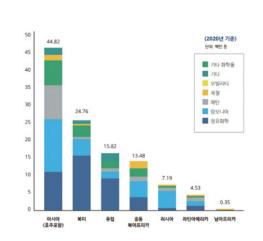
기술 분류_ 수소

고분자전해질(PEM) 수전해 산소 발생 반응 촉매 및 그의 제조 방법

05 사업화 포인트 고분자전해질(PEM) 수전해 공정을 향상시켜 그린수소 분야 업종 확장(플랜트 및 충전소) 및 에너지기 업의 역량강화를 위한 R&D 추진 필요


06 활용분야 및 시장 규모


활용 분야


수소연료전지, 수소차 충전소

시장 규모 및 전망

[국내 수소 생산량(생산방식별)]

(출처: Deloitte 보고서)

07 지식재산권 현황

권리현황

특허명	고분자전해질(PEM) 수전해 수소 발생 반응 촉매 및 그의 제조 방법
출원번호	10-2018-0142081
권리자	한국전력공사
관리기관	한국전력공사
담당자	남궁원 차장
문의처	042-865-5143